表达式为 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。 反比例函数的其他形式:y=k/x=k·1/x=kx-1 反比例函数的特点:y=k/x→xy=k 自变量x的取值范围是不等于0的一切实数。
如果两个变量x,y之间的对应关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例 函数。y是x的反比例函数?函数表达式为y=k/x或y=kxˉ1或xy=k(k为常数,k≠0)。
反比例函数知识点有:反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第三象限或第四象限。
(1) 教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
反比例函数 高一数学 知识点 形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例函数的图像为双曲线。
1、表达式为 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。 反比例函数的其他形式:y=k/x=k·1/x=kx-1 反比例函数的特点:y=k/x→xy=k 自变量x的取值范围是不等于0的一切实数。
2、反比例函数是一种函数关系,其表达式为y=k/x,其中k为常数,x和y均为实数。这种函数关系在数学中十分常见,常被用于描述两个变量之间的相互关系。反比例函数的定义域为x≠0,值域为y≠0。
3、反比例函数 形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。自变量x的取值范围是不等于0的一切实数。反比例函数的图像为双曲线。
4、反比例函数指的是:反比例函数:单调性 当k0时,图象分别位于第三象限,每一个象限内,从左往右,y随x的增大而减小;当k0时,图象分别位于第四象限,每一个象限内,从左往右,y随x的增大而增大。
5、(k为常数,k≠0)[1] ,其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。k大于0时,图像在三象限。
6、反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴 y=±x(即之一三,二四象限角平分线),对称中心是坐标原点。反比例函数图像不与x轴和y轴相交的渐近线为:x轴与y轴。
1、函数y=k/x称为反比例函数,其中k0,其中X是自变量,当k0时,图象分别位于第三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于四象限,同一个象限内,y随x的增大而增大。
2、(1) 教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
3、由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为?k?。
4、)反比例函数图像的性质;2)求反比例函数解析式;3)K的几何性质的应用。以上几点考察基本上都是和一次函数,相似,全等,方程,圆,三角函数,勾股定理等知识相结合考察,单一命题的机会比较少同时题目也比较简单。
5、k值相等的反比例函数重合,k值不相等的反比例函数永不相交。1|k|越大,反比例函数的图象离坐标轴的距离越远。
6、y随x的增大而增大所以又称为增函数 倘若不在同一象限,则刚好相反。 由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。
反比例函数的图像属于以原点为对称中心的中心对称的两条曲线,反比例函数图象中每一象限的每一条曲线会无限接近x轴y轴但不会与坐标轴相交(y≠0)。
知识点一: 反比例函数的概念 一般地,如果两个变量x、y之间的关系可以表示成或y=kx-1(k为常数,)的形式,那么称y是x的反比例函数。
反比例函数指的是:反比例函数:单调性 当k0时,图象分别位于第三象限,每一个象限内,从左往右,y随x的增大而减小;当k0时,图象分别位于第四象限,每一个象限内,从左往右,y随x的增大而增大。
反比例函数的几何意义:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
反比例函数是指当一个变量的值增加(或减少),另一个变量的值以相反的比例相应地减少(或增加)。
反比例的解释在相关的a和b两个量中,如果其中一个量a扩大到 若干 倍,另一个量b反而缩小到原来的若干分 之一 ,或一个量a缩小到原来的若干分之一,另一个量b反而扩大到若干倍,这两个量的变化关系叫做反比例。