1、运算法则:加(减)法则:[f(x)+g(x)]=f(x)+g(x)。乘法法则:[f(x)*g(x)]=f(x)*g(x)+g(x)*f(x)。除法法则:[f(x)/g(x)]=[f(x)*g(x)-g(x)*f(x)]/g(x)^2。
指数函数是指数学中重要的函数。指数公式有:同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。
loga(MN)=logaM+logaN;logaMN=logaM-logaN;logaMn=nlogaM (n∈R);a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,a表示n个a连乘。
指数函数8个基本公式是如下:y=c(c为常数)y=0。y=x^n y=nx^(n-1)。y=a^x y=a^xlna y=e^x y=e^x。y=logax y=logae/x y=lnx y=1/x。y=sinx y=cosx。
先弄清楚底数、指数、幂这三个基本概念的涵义。前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。
1、e指数函数四则运算是:loga(AB)=loga A+loga B,loga(A/B)=loga A-loga B,logaN^x=xloga N。
2、Y=a^x(a0且不=1)指数函数的一般形式为y=a^x(a0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。
3、级数展开公式 e 可以用无穷级数展开来计算:e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + ...其中,n! 表示 n 的阶乘。
4、e指数变换公式:ln e = 1 e^(ln x) = x de^x/dx = e^x d ln x / dx = 1/x ∫e^x dx = e^x + c ∫xe^xdx = xe^x - e^x + c 指数幂的运算性质 (1)am·an=am+n(m,n是正整数)。
5、以e为底的运算法则有:(1)lne=(2)lne^x=x、(3)lne^e=e、(4)e^(lnx)=x、(5)de^x/dx=e^x等。
指数函数的运算公式:指数函数的一般形式为 (a0且≠1) (x∈R),要想使得x能够取整个实数集合为定义域,则只有使得a0且a≠1。
对数函数计算公式:y=log(a)X,(其中a是常数,a0且a不等于1),它实际上就是指数函数的反函数,可表示为x=a^y。指数函数计算公式:一般形式为y=a^x(a0且≠1) (x∈R)。
指数与对数的转换公式是a^y=x→y=log(a)(x)。对数函数的一般形式为y=logax,它实际上就是指数函数的反函数,图象关于直线y=x对称的两函数互为反函数,可表示为x=a^y。
注意:和对数相比,指数及指数运算要简单得多。但是还是有些基础不是很好的高中同学,对指数运算不够熟练,导致影响后面知识的学习。如对数、指数函数、数列、二项式定理等都需要用到指数及指数运算。
先弄清楚底数、指数、幂这三个基本概念的涵义。前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。
对数运算公式:如果a0,a≠1,M0,N0,那么:loga(MN)=logaM+logaN。logaMN=logaM-logaN。logaMn=nlogaM(n∈R)。
指数函数是指数学中重要的函数。指数公式有:同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。
loga(MN)=logaM+logaN;logaMN=logaM-logaN;logaMn=nlogaM (n∈R);a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,a表示n个a连乘。