为什么神经网络能以任意精度拟合任意复杂度的函数 (神经网络为什么可以拟合任何函数)

2023-11-01 22:49:30 体育知识 吕布

为什么神经网络能以任意精度拟合任意复杂度的函数?

1、Universal approximation theorem (Hornik et al., 1989;Cybenko, 1989) 定理表明:前馈神经网络,只需具备单层隐含层和有限个神经单元,就能以任意精度拟合任意复杂度的函数。这是个已经被证明的定理。

神经网络算法能拟合所有函数吗

1、用BP神经网络可以拟合曲线的。下图就是用sim( )函数对BP网络进行仿真。

2、Universal approximation theorem (Hornik et al., 1989;Cybenko, 1989) 定理表明:前馈神经网络,只需具备单层隐含层和有限个神经单元,就能以任意精度拟合任意复杂度的函数。这是个已经被证明的定理。

3、隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。

4、我是做这个方向的,神经网络拟合出的曲线是没有相应的函数的,他是根据许多的权重值,阀值和偏置值的训练确定的曲线。还有什么相关问题可以问我,我的QQ378257104。

5、所以结果也会有区别的。在表达拟合函数的时候,我们只要要列出它的参数取值及拟合模型即可,例如BP中的losig模型,隐层神经元个数,下降速率采用的方法traindx,学习速率0.05,训练最小误差0.001等等。

6、这个是做不到的。神经网络的非线性函数拟合是指非线性映射,并非对具体数学表达式进行求解。这也是神经网络的特点,即不需要精确的数学表达式,即可实现许多功能。非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。

一个三层的BP神经网络可以以任意精度逼近一个任意给定的连续函数...

HRBP就是人力资源服务经理。主要工作内容是负责公司的人力资源管理政策体系、制度规范在各业务单元的推行落实,协助业务单元完善人力资源管理工作,并发展业务单元各级干部的人力资源管理能力。

)任何的布尔函数都可以由两层单元的网络准确表示,但是所需的隐藏层神经元的数量随网络输入数量呈指数级增长;2)任意连续函数都可由一个两层的网络以任意精度逼近。

年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。

由于这样的不同,要实现同样的功能,RBF需要更多的神经元,这就是rbf网络不能取代标准前向型网络的原因。但是RBF的训练时间更短。它对函数的逼近是最优的,可以以任意精度逼近任意连续函数。

BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

免责声明
           本站所有信息均来自互联网搜集
1.与产品相关信息的真实性准确性均由发布单位及个人负责,
2.拒绝任何人以任何形式在本站发表与中华人民共和国法律相抵触的言论
3.请大家仔细辨认!并不代表本站观点,本站对此不承担任何相关法律责任!
4.如果发现本网站有任何文章侵犯你的权益,请立刻联系本站站长[QQ:775191930],通知给予删除
请先 登录 再评论,若不是会员请先 注册

Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 66060320 bytes) in /www/wwwroot/lvqb.com/zb_users/plugin/dyspider/include.php on line 39